
YFrake
Release 0.3.4

Mattias Aabmets

May 19, 2022

YFRAKE

1 Description 1

2 Getting Started 3

3 Endpoints 5

4 Caching 7

5 Overview 9
5.1 Client Object . 9
5.2 ClientResponse Object . 10
5.3 Async- and ThreadResults Object . 10

6 Reference 11
6.1 Client Reference . 11
6.2 ClientResponse Reference . 13
6.3 AsyncResults Reference . 15
6.4 ThreadResults Reference . 16

7 Examples 17
7.1 Async Mode Examples . 17
7.2 Sync (Threaded) Mode Examples . 19
7.3 Various Examples . 20

8 Overview 23

9 Reference 25

10 Examples 27

11 Overview 29

12 Reference 31
12.1 Public Methods . 31
12.2 Public Properties . 31

13 Examples 33
13.1 Correct Usage Examples . 33
13.2 Incorrect Usage Examples . 34

14 Config File 37
14.1 Description . 37

i

14.2 Sections . 37

Index 41

ii

CHAPTER

ONE

DESCRIPTION

YFrake is a fast and flexible stock market, forex and cryptocurrencies data scraper and server1. It enables developers
to build powerful apps without having to worry about the details of session management or maximizing throughput2.

YFrake has caching built in to speed up requests even more and to reduce load on the source servers. The cache and
other YFrake options are fully customizable through the configuration file.

YFrake can be used as a client to directly return market data to the current program or as a programmatically con-
trollable server to provide market data to other applications.

In addition, all network requests by the client in both sync and async modes are non-blocking, which means that your
program can continue executing your code while network requests are in progress.

The best part about YFrake is its built-in swagger API documentation which you can use to perform test queries and
examine the returned responses straight in your web browser.

YFrake is built upon the widely used aiohttp package and its plugins.

1 Stock market data is sourced from Yahoo Finance.
2 The limits of YFrake are configurable and depend on the capabilities of your system.

1

YFrake, Release 0.3.4

2 Chapter 1. Description

CHAPTER

TWO

GETTING STARTED

Install the package by executing:

pip install yfrake

Import the public objects with:

from yfrake import client, server, config

The client, server, and config objects are singletons, which have been instantiated internally beforehand to provide
the user with lower-case object name identifiers.

NB! The minimum required Python version for YFrake is Python 3.10. From YFrake version 2.0.0 forward, trying to
import YFrake in lower Python versions will raise a RuntimeError.

3

YFrake, Release 0.3.4

4 Chapter 2. Getting Started

CHAPTER

THREE

ENDPOINTS

Here is the full list of all available endpoints.
You can perform test queries to these endpoints from the built-in Swagger documentation.

Count Endpoints Symbols
1 historical_prices stocks, forex, crypto
2 quotes_overview stocks, forex, crypto
3 quote_type stocks, forex, crypto
4 news stocks, forex, crypto
5 recommendations stocks, forex, crypto
6 validate_symbols stocks, forex, crypto
7 price_overview stocks, forex, crypto
8 detailed_summary stocks, forex, crypto
9 options stocks only
10 insights stocks only
11 esg_chart stocks only
12 shares_outstanding stocks only
13 esg_scores stocks only
14 purchase_activity stocks only
15 earnings stocks only
16 calendar_events stocks only
17 company_overview stocks only
18 sec_filings stocks only
19 financials stocks only
20 recommendation_trend stocks only
21 ratings_history stocks only
22 earnings_history stocks only
23 earnings_trend stocks only
24 key_statistics stocks only
25 income_statements stocks only
26 cashflow_statements stocks only
27 balance_statements stocks only
28 institution_ownership stocks only
29 fund_ownership stocks only
30 major_holders stocks only
31 insider_transactions stocks only
32 insider_holders stocks only
33 market_summary none

continues on next page

5

YFrake, Release 0.3.4

Table 1 – continued from previous page
Count Endpoints Symbols
34 trending_symbols none
35 currencies none

6 Chapter 3. Endpoints

CHAPTER

FOUR

CACHING

YFrake includes a fast in-memory TLRU cache for the client and the server objects to speed up consecutive identical
requests to the same endpoints over a period of time. The default time-to-live (TTL) values have been found to be
optimal through testing.

Caching can be disabled either individually for each endpoint by setting their TTL value to zero or in groups by enabling
the group override setting and leaving the relevant group TTL value to zero.

This cache does not persist over program restarts. If the user desires to use something more permanent, it is suggested
to use a library like diskcache.

7

https://grantjenks.com/docs/diskcache/

YFrake, Release 0.3.4

8 Chapter 4. Caching

CHAPTER

FIVE

OVERVIEW

Contents

• Overview

– Client Object

∗ Methods

∗ Decorators

– ClientResponse Object

– Async- and ThreadResults Object

5.1 Client Object

5.1.1 Methods

The client singleton is the main object which is used to request data from the Yahoo Finance API servers. It has three
methods: the get method, which is used to make a single request, the batch_get helper method, which is used to
schedule multiple requests with one call, and the get_all helper method, which requests data about a single symbol
from all symbol-specific endpoints at once.

5.1.2 Decorators

The client object has a single decorator named session, which opens a session to the Yahoo Finance API servers
and inspects the concurrency mode of your program to adjust its behaviour accordingly. This enables YFrake to work
in async and sync (threaded) modes out-of-the-box.

A function or a coroutine must be decorated with this decorator before any calls to the client methods are made.
Calls to the client methods do not have to take place inside the same function or coroutine which was decorated.

For simplicity’s sake, it is recommended to decorate the main function or coroutine of your program, so the session is
opened on program start and closed when the program ends, but in essence any function or a coroutine can be used, as
long as the before-mentioned considerations are taken into account.

The best practice is to have your program activate the decorator only once, because repeatedly opening and closing the
session will kill your performance.

Note: On Windows machines, the decorator automatically sets the asyncio event loop policy to WindowsSelectorEvent-
LoopPolicy, because the default WindowsProactorEventLoopPolicy does not work correctly. This automatic selection

9

YFrake, Release 0.3.4

works only when the decorated coroutine of your program is the main coroutine, which gets passed into the asyncio.
run() function.

5.2 ClientResponse Object

Instances of this object are returned by the client.getmethod. It handles the request and contains the response from
the Yahoo Finance API servers in three properties: endpoint, error and data.

The endpoint is a string, while the error and data can be either dictionaries or None. If the request returned with
an error, the error property is a dictionary and the data property is None. If the request returned with data, then the
data property is a dictionary and the error property is None. This allows the developer to easily check for response
status by writing if resp.error is None:.

It has methods to (a)wait for the response and to check its completion status and also two properties, event and future,
to access the low-level internals of the ClientResponse object.

5.3 Async- and ThreadResults Object

Instances of these objects, which are returned by the client.batch_get and the client.get_all methods, are a
list-like containers of ClientResponse objects with additional functionality attached on top.

There are two kinds of results objects: AsyncResults and ThreadResults. Which one is returned depends on the
concurrency mode of the program. AsyncResults is returned when the program is running in async mode and the
ThreadResults is returned when the program is running in sync (threaded) mode.

The results objects can be used with the len() and list() functions and the subscript operator []. They have methods
to (a)wait for the requests and to check their completion statuses and also generators to iterate over the ClientResponse
objects in a for or an async for loop. These generators guarantee that the objects which they yield into the for loop
have finished their request to the servers.

You can also loop over a results object with for resp in results, but the returned objects are not guaranteed to be
in a finished state, unless you have specifically (a)waited the results object beforehand.

10 Chapter 5. Overview

CHAPTER

SIX

REFERENCE

6.1 Client Reference

Contents

• Client Reference

– Public Decorators

– Public Methods

6.1.1 Public Decorators

@session

Manages the network connection to the Yahoo Finance API servers.
Needs to be active only when the client methods are being called.
Used internally by the YFrake server process.

Raises RuntimeError – if a configuration is already active.

6.1.2 Public Methods

classmethod get(endpoint, **kwargs)

Schedules a request to be made to the Yahoo Finance servers.
Returns immediately with the pending response object.

Parameters

• endpoint (str) – The name of the endpoint from which to request data.

• kwargs (unpacked dict) – Variable keyword arguments, which depend on the endpoint
requirements. Values can be either str, int or bool.

Raises

• RuntimeError – if the session decorator is not in use.

11

YFrake, Release 0.3.4

• NameError – if an invalid endpoint name has been provided.

• KeyError – if an invalid query parameter has been provided.

• TypeError – if the datatype of a query parameter is invalid.

Returns Response object

Return type ClientResponse

classmethod batch_get(queries)

Helper method which schedules multiple queries at once.
Returns immediately with the pending results object.

Parameters queries (list) – Collection of query dicts.

Raises

• RuntimeError – if the session decorator is not in use.

• NameError – if an invalid endpoint name has been provided.

• KeyError – if an invalid query parameter has been provided.

• TypeError – if the datatype of a query parameter is invalid.

Returns List-like collection object

Return type AsyncResults or ThreadResults

classmethod get_all(symbol)

Helper method which schedules a request to all symbol-specific
endpoints for a given symbol at once. A single call results in
32 simultaneous requests to the Yahoo Finance API servers.
Size of the returned data can vary from 1 to 1.5 megabytes.
Returns immediately with the pending results object.

Parameters symbol (str) – Security identifier.

Raises

• RuntimeError – if the session decorator is not in use.

• NameError – if an invalid endpoint name has been provided.

• KeyError – if an invalid query parameter has been provided.

• TypeError – if the datatype of a query parameter is invalid.

Returns List-like collection object

Return type AsyncResults or ThreadResults

12 Chapter 6. Reference

YFrake, Release 0.3.4

6.2 ClientResponse Reference

Contents

• ClientResponse Reference

– Public Methods

– API Response Properties

– Internal Request Properties

6.2.1 Public Methods

pending()

Checks if the request has completed by calling the is_set() method on the
internal event object. Returns True if the request is still in progress.

Returns Request completion status

Return type bool

wait()

In async mode, returns the wait() coroutine of the internal asyncio.Event object.
In sync (threaded) mode, calls the wait() method on the internal threading.Event object.

Returns Awaitable coroutine or None

Return type Coroutine or None

6.2.2 API Response Properties

property endpoint

Provides access to the endpoint name of the response.

Raises RuntimeError – on property modification or deletion.

Returns Name of the endpoint.

Return type str

property error

Provides access to the error dictionary of the response.

Raises RuntimeError – on property modification or deletion.

6.2. ClientResponse Reference 13

https://docs.python.org/3/library/asyncio-sync.html#asyncio.Event
https://docs.python.org/3/library/threading.html#threading.Event

YFrake, Release 0.3.4

Returns Error dict, if there was an error, or None.

Return type dict or None

property data

Provides access to the data dictionary of the response.

Raises RuntimeError – on property modification or deletion.

Returns Data dict, if there weren’t any errors, or None.

Return type dict or None

6.2.3 Internal Request Properties

property event

Provides access to the internal request completion event object.
Return type depends on the concurrency mode of the program.
In most cases, manual usage of this object is unnecessary.

Disclaimer: Incorrect usage of this object can break things.

Raises RuntimeError – on property modification or deletion.

Returns Reference to the internal event object.

Return type asyncio.Event in async mode

Return type threading.Event in sync (threaded) mode

property future

Provides access to the internal future-like request object.
Return type depends on the concurrency mode of the program.
In most cases, manual usage of this object is unnecessary.

Disclaimer: Incorrect usage of this object can break things.

Raises RuntimeError – on property modification or deletion.

Returns Reference to the internal future-like object.

Return type asyncio.Task in async mode

Return type concurrent.futures.Future in sync (threaded) mode

14 Chapter 6. Reference

https://docs.python.org/3/library/asyncio-sync.html#asyncio.Event
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/concurrent.futures.html?highlight=concurrent%20futures%20future#concurrent.futures.Future

YFrake, Release 0.3.4

6.3 AsyncResults Reference

Contents

• AsyncResults Reference

– Public Methods

– Public Coroutines

6.3.1 Public Methods

pending()

Function which checks the completion statuses of all its requests by calling the pending() method on each
ClientResponse. Returns True if at least one request is still in progress.

Returns Request completion status

Return type bool

6.3.2 Public Coroutines

async wait()

Awaits until all its requests have completed.

Returns None

async gather()

Asynchronous generator which can be used in the async for loop.
Awaits and starts yielding results when all requests have completed.

Returns Request response objects

Return type ClientResponse

async as_completed()

Asynchronous generator which can be used in the async for loop.
Awaits and starts yielding results immediately as they become available.

Returns Request response objects

Return type ClientResponse

6.3. AsyncResults Reference 15

YFrake, Release 0.3.4

6.4 ThreadResults Reference

Contents

• ThreadResults Reference

– Public Methods

6.4.1 Public Methods

pending()

Function which checks the completion statuses of all its requests by calling the pending() method on each
ClientResponse. Returns True if at least one request is still in progress.

Returns Request completion status

Return type bool

wait()

Waits until all its requests have completed.

Returns None

gather()

Synchronous generator which can be used in the for loop.
Waits for and starts yielding results when all requests have completed.

Returns Request response objects

Return type ClientResponse

as_completed()

Synchronous generator which can be used in the for loop.
Waits for and starts yielding results immediately as they become available.

Returns Request response objects

Return type ClientResponse

16 Chapter 6. Reference

CHAPTER

SEVEN

EXAMPLES

7.1 Async Mode Examples

Contents

• Async Mode Examples

– Client.get() Examples

– Client.batch_get() Examples

– Client.get_all() Examples

7.1.1 Client.get() Examples

The following example loops at line 4 while the response has not yet arrived:

1 @client.session
2 async def main():
3 resp = client.get('quote_type', symbol='msft')
4 while resp.pending():
5 # do some other stuff

The following example blocks at line 4 until the response has arrived:

1 @client.session
2 async def main():
3 resp = client.get('quote_type', symbol='msft')
4 await resp.wait()
5 # do some other stuff

17

YFrake, Release 0.3.4

7.1.2 Client.batch_get() Examples

The following example waits until all of the responses have arrived before running the async for loop:

1 @client.session
2 async def main():
3 queries = [
4 dict(endpoint='quote_type', symbol='msft'),
5 dict(endpoint='price_overview', symbol='aapl'),
6 dict(endpoint='key_statistics', symbol='tsla')
7]
8 results = client.batch_get(queries)
9 async for resp in results.gather():

10 # do some stuff with the resp

The following example starts yielding the responses into the async for loop as soon as they become available:

1 @client.session
2 async def main():
3 queries = [
4 dict(endpoint='quote_type', symbol='msft'),
5 dict(endpoint='price_overview', symbol='aapl'),
6 dict(endpoint='key_statistics', symbol='tsla')
7]
8 results = client.batch_get(queries)
9 async for resp in results.as_completed():

10 # do some stuff with the resp

7.1.3 Client.get_all() Examples

The following example loops while all the available data about a symbol is being retrieved:

1 @client.session
2 async def main():
3 results = client.get_all(symbol='msft')
4 while results.pending():
5 # do some other stuff

The following example blocks while all the available data about a symbol is being retrieved:

1 @client.session
2 async def main():
3 results = client.get_all(symbol='aapl')
4 await results.wait()
5 # do some other stuff

WARNING: A single call to get_all() creates 32 simultaneous network requests and can return up to 1.5 megabytes
of data, so uncontrolled usage of this method may deplete the memory of your system and may get your IP blacklisted
by Yahoo.

18 Chapter 7. Examples

YFrake, Release 0.3.4

7.2 Sync (Threaded) Mode Examples

Contents

• Sync (Threaded) Mode Examples

– Client.get() Examples

– Client.batch_get() Examples

– Client.get_all() Examples

7.2.1 Client.get() Examples

The following example loops at line 4 while the response has not yet arrived:

1 @client.session
2 def main():
3 resp = client.get('quote_type', symbol='msft')
4 while resp.pending():
5 # do some other stuff

The following example blocks at line 4 until the response has arrived:

1 @client.session
2 def main():
3 resp = client.get('quote_type', symbol='msft')
4 resp.wait()
5 # do some other stuff

7.2.2 Client.batch_get() Examples

The following example waits until all of the responses have arrived before running the for loop:

1 @client.session
2 def main():
3 queries = [
4 dict(endpoint='quote_type', symbol='msft'),
5 dict(endpoint='price_overview', symbol='aapl'),
6 dict(endpoint='key_statistics', symbol='tsla')
7]
8 results = client.batch_get(queries)
9 for resp in results.gather():

10 # do some stuff with the resp

The following example starts yielding the responses into the for loop as soon as they become available:

1 @client.session
2 def main():
3 queries = [
4 dict(endpoint='quote_type', symbol='msft'),

(continues on next page)

7.2. Sync (Threaded) Mode Examples 19

YFrake, Release 0.3.4

(continued from previous page)

5 dict(endpoint='price_overview', symbol='aapl'),
6 dict(endpoint='key_statistics', symbol='tsla')
7]
8 results = client.batch_get(queries)
9 for resp in results.as_completed():

10 # do some stuff with the resp

7.2.3 Client.get_all() Examples

The following example loops while all the available data about a symbol is being retrieved:

1 @client.session
2 def main():
3 results = client.get_all(symbol='msft')
4 while results.pending():
5 # do some other stuff

The following example blocks while all the available data about a symbol is being retrieved:

1 @client.session
2 def main():
3 results = client.get_all(symbol='aapl')
4 results.wait()
5 # do some other stuff

WARNING: A single call to get_all() creates 32 simultaneous network requests and can return up to 1.5 megabytes
of data, so uncontrolled usage of this method may deplete the memory of your system and may get your IP blacklisted
by Yahoo.

7.3 Various Examples

The following example prints out the names of all the endpoints queried:

1 from yfrake import client
2 import asyncio
3

4 @client.session
5 async def main():
6 results = client.get_all(symbol='msft')
7 async for resp in results.gather():
8 print(f'Endpoint: {resp.endpoint}')
9

10 if __name__ == '__main__':
11 asyncio.run(main())

The following example prints out either the error or the data property of the ClientResponse objects:

1 from yfrake import client
2 import asyncio
3

(continues on next page)

20 Chapter 7. Examples

YFrake, Release 0.3.4

(continued from previous page)

4 @client.session
5 async def main():
6 queries = [
7 dict(endpoint='quote_type', symbol='msft'),
8 dict(endpoint='price_overview', symbol='gme_to_the_moon'),
9 dict(endpoint='key_statistics', symbol='tsla')

10]
11 results = client.batch_get(queries)
12 await results.wait()
13 for resp in results:
14 if resp.error:
15 print(f'Error: {resp.error}')
16 else:
17 print(f'Data: {resp.data}')
18

19 if __name__ == '__main__':
20 asyncio.run(main())

The following example creates a batch request of 3 endpoints for 3 symbols:

1 from yfrake import client
2

3 @client.session
4 def main():
5 all_queries = list()
6 for symbol in ['msft', 'aapl', 'tsla']:
7 queries = [
8 dict(endpoint='quote_type', symbol=symbol),
9 dict(endpoint='price_overview', symbol=symbol),

10 dict(endpoint='key_statistics', symbol=symbol)
11]
12 all_queries.extend(queries)
13

14 results = client.batch_get(all_queries)
15 results.wait()
16

17 count = len(results)
18 print(f'ClientResponse objects: {count}') # 9
19

20 if __name__ == '__main__':
21 main()

The following example demonstrates the usage of the get method inside a non-decorated function (or coroutine):

1 from yfrake import client
2

3 def make_the_request(symbol):
4 resp = client.get('quote_type', symbol=symbol)
5 resp.wait()
6 return resp
7

8 @client.session
(continues on next page)

7.3. Various Examples 21

YFrake, Release 0.3.4

(continued from previous page)

9 def main():
10 resp = make_the_request('msft')
11 print(f'Data: {resp.data}')
12

13 if __name__ == '__main__':
14 main()

22 Chapter 7. Examples

CHAPTER

EIGHT

OVERVIEW

The standardized interface of the YFrake server simplifies the process of acquiring stock market data for other appli-
cations, which can use their own networking libraries to make web requests to the YFrake server.

There are two ways how you can run the server: you can either control it from within your Python program through the
server singleton or you can directly call the YFrake module in the terminal with python -m yfrake args. When
running the server from the terminal without any args, then nothing will happen. The optional args are --run-server
and --config-file /path, which can be used independently from each other.

The arg --config-file accepts as its only parameter either a full path to the config file or the special keyword here,
which will have the server look for the config file in the Current Working Directory. When using the keyword here,
if the file does not exist, it will be created with the default settings. If the parameter is a full path to a config file, then the
file must exist, otherwise an exception will be thrown. In all cases, the config file must be named yfrake_settings.
ini.

When --run-server is used without the --config-file arg, then the server is run with the default settings. Using
--config-file here without the --run-server arg is useful for getting a copy of the config file with the default
settings to the CWD.

You can access the built-in Swagger documentation by running the server and navigating to the servers root address in
your web browser (default: http://localhost:8888).

You can perform queries to the endpoints either directly through the Swagger Docs UI, or by navigating to the appro-
priate URL-s in the address bar of your web browser.

When accessing endpoints through their URL-s, each endpoint has a path name like /market_summary. To request
data from that endpoint, in your address bar you would write: http://localhost:8888/market_summary.

If an endpoint like /company_overview requires query parameters, then you would write in your address bar: http:/
/localhost:8888/company_overview?symbol=msft.

23

YFrake, Release 0.3.4

24 Chapter 8. Overview

CHAPTER

NINE

REFERENCE

classmethod server.start()

Starts the YFrake server. Only one server can be active per process at any time.

Raises RuntimeError – if the server is already running.

Returns None

classmethod server.stop()

Stops the YFrake server.

Raises RuntimeError – if the server is already stopped.

Returns None

classmethod server.is_running()

Checks if the server is running.

Returns Server status

Return type bool

25

YFrake, Release 0.3.4

26 Chapter 9. Reference

CHAPTER

TEN

EXAMPLES

Running the server programmatically:

1 from yfrake import server
2

3 if not server.is_running()
4 server.start()
5

6 # do other stuff
7

8 if server.is_running()
9 server.stop()

Creating the ‘yfrake_settings.ini’ file to the CWD if it doesn’t exist, without running the server:
$ python -m yfrake --config-file here

Running the server from the terminal:

1) With the default configuration:
$ python -m yfrake --run-server

2) With ‘yfrake_settings.ini’ in the CWD:
$ python -m yfrake --run-server --config-file here

3) With the config file in a custom directory:
$ python -m yfrake --run-server --config-file "/path/to/'yfrake_settings.ini"

27

YFrake, Release 0.3.4

28 Chapter 10. Examples

CHAPTER

ELEVEN

OVERVIEW

Configuration settings for YFrake are stored in a file named yfrake_settings.ini. The config singleton reads the
settings from that file and configures the client and the server objects. It is not necessary to use the config object,
if you want to run YFrake with the default settings.

The config has two properties named file and settings and one method named is_locked, which is used to check
if the configuration is locked, i.e., the client.session decorator is in use (active).

All the properties of the config object can be read at any time, but the file property can be modified only when the
client.session decorator is not in use (active). The file property can accept either a pathlib.Path or a string object,
which contains a full path to a config file. Modifying the file property after the server has started has undefined
behaviour and is therefore not recommended.

Accessing the settings property will return a dictionary of the currently loaded configuration. Modifying this dic-
tionary does not modify the currently loaded configuration.

The config object also has an attribute named HERE, which points to an abstract config file in the Current Working
Directory. Assigning the HERE attribute to the file property will create the config file in the CWD with the default
settings, if it doesn’t exist.

29

YFrake, Release 0.3.4

30 Chapter 11. Overview

CHAPTER

TWELVE

REFERENCE

Contents

• Reference

– Public Methods

– Public Properties

12.1 Public Methods

classmethod is_locked()

Helper method which is used to check if the configuration is
being used by the client.session decorator. Any attempt
to change the configuration while the session is open will cause
a RuntimeError to be thrown.

Returns Value of the config lock status.

Return type bool

12.2 Public Properties

class property file

The full path to the configuration file which should be used by the client and the server objects.
Can be assigned either a pathlib.Path or a str object.

Raises TypeError – on attempt to delete the property.

Returns Full path to the config file to be used.

Return type pathlib.Path

31

YFrake, Release 0.3.4

class property settings

Deep copied dictionary of the currently loaded configuration.
This property is READ ONLY.

Raises

• TypeError – on attempt to modify the property.

• TypeError – on attempt to delete the property.

Return type dict

32 Chapter 12. Reference

CHAPTER

THIRTEEN

EXAMPLES

Contents

• Examples

– Correct Usage Examples

– Incorrect Usage Examples

13.1 Correct Usage Examples

No config object usage is required to use the default settings:

1 from yfrake import client
2

3 @client.session
4 def main():
5 # do stuff
6

7 main()

Assigning a custom config file in the Current Working Directory.
If the file doesn’t exist, it will be created with the default settings.

1 from yfrake import client, config
2

3 config.file = config.HERE
4

5 @client.session
6 def main():
7 # do stuff
8

9 main()

Assigning a custom config file in the specified path:

33

YFrake, Release 0.3.4

1 from yfrake import client, config
2

3 config.file = "C:/Users/username/Projects/Project Name/yfrake_settings.ini"
4

5 @client.session
6 def main():
7 # do stuff
8

9 main()

Reading the currently loaded configuration settings:

1 from yfrake import client, config
2

3 settings = config.settings # correct
4

5 @client.session
6 def main():
7 settings = config.settings # also correct
8

9 main()

Assigning a custom config file before the server is started:

1 from yfrake import server, config
2

3 config.file = Path("C:/Users/username/Projects/Project Name/yfrake_settings.ini")
4 server.start()
5

6 # defined behaviour
7

8 server.stop()

13.2 Incorrect Usage Examples

Trying to assign a custom config file in the Current Working Directory.

1 from yfrake import client, config
2

3 @client.session
4 def main():
5 config.file = config.HERE
6

7 # will raise an exception
8

9 main()

Trying to assign a custom custom config file in the specified path:

1 from yfrake import client, config
2

(continues on next page)

34 Chapter 13. Examples

YFrake, Release 0.3.4

(continued from previous page)

3 @client.session
4 def main():
5 config.file = "C:/Users/username/Projects/Project Name/yfrake_settings.ini"
6

7 # will raise an exception
8

9 main()

Assigning a custom config file after the server has started:

1 from yfrake import server, config
2

3 server.start()
4 config.file = Path("C:/Users/username/Projects/Project Name/yfrake_settings.ini")
5

6 # undefined behaviour
7

8 server.stop()

13.2. Incorrect Usage Examples 35

YFrake, Release 0.3.4

36 Chapter 13. Examples

CHAPTER

FOURTEEN

CONFIG FILE

Contents

• Config File

– Description

– Sections

∗ CLIENT

∗ SERVER

∗ CACHE_SIZE

∗ CACHE_TTL_GROUPS

∗ CACHE_TTL_SHORT

∗ CACHE_TTL_LONG

14.1 Description

TTL time values are integer seconds. All settings in the config file affect the client and the server behaviour both,
except those in the SERVER section, which affect only the behaviour of the server.

14.2 Sections

14.2.1 CLIENT

limit: integer - default: 64
The amount of active concurrent requests to Yahoo servers.

timeout: integer - default: 2
The amount of time in seconds to wait for each response.

37

YFrake, Release 0.3.4

14.2.2 SERVER

host: string - default: localhost
The host name on which the YFrake server listens on.

port: integer - default: 8888
The port number on which the YFrake server listens on.

backlog: integer - default: 128
The number of unaccepted connections that the system will allow before refusing new connections.

14.2.3 CACHE_SIZE

max_entries: integer - default: 1024
The max number of entries in the cache before the cache begins to evict LRU entries.

max_entry_size: integer - default: 1
The max memory usage for a single cache entry in megabytes.
A request is not cached if the response is larger than this value.

max_memory: integer - default: 64
The max memory usage of entries in megabytes before the cache begins to evict LRU entries.

14.2.4 CACHE_TTL_GROUPS

override: string - default: false
If false, the individual TTL value of each endpoint is used.
If true, the group TTL value of the endpoints is used.

short_ttl: integer - default: 0
Defines the group TTL value for the CACHE_TTL_SHORT section.

long_ttl: integer - default: 0
Defines the group TTL value for the CACHE_TTL_LONG section.

14.2.5 CACHE_TTL_SHORT

historical_prices: integer - default: 60
detailed_summary: integer - default: 60
financials: integer - default: 60
insights: integer - default: 60
key_statistics: integer - default: 60
market_summary: integer - default: 60
news: integer - default: 60
options: integer - default: 60
price_overview: integer - default: 60

38 Chapter 14. Config File

YFrake, Release 0.3.4

quotes_overview: integer - default: 60
trending_symbols: integer - default: 60

14.2.6 CACHE_TTL_LONG

balance_statements: integer - default: 3600
calendar_events: integer - default: 3600
cashflow_statements: integer - default: 3600
company_overview: integer - default: 3600
currencies: integer - default: 3600
earnings: integer - default: 3600
earnings_history: integer - default: 3600
earnings_trend: integer - default: 3600
esg_chart: integer - default: 3600
esg_scores: integer - default: 3600
fund_ownership: integer - default: 3600
income_statements: integer - default: 3600
insider_holders: integer - default: 3600
insider_transactions: integer - default: 3600
institution_ownership: integer - default: 3600
major_holders: integer - default: 3600
purchase_activity: integer - default: 3600
quote_type: integer - default: 3600
ratings_history: integer - default: 3600
recommendation_trend: integer - default: 3600
recommendations: integer - default: 3600
sec_filings: integer - default: 3600
shares_outstanding: integer - default: 3600
validate_symbols: integer - default: 3600

14.2. Sections 39

YFrake, Release 0.3.4

40 Chapter 14. Config File

INDEX

B
batch_get(), 12
built-in function

session(), 11

D
data, 14

E
endpoint, 13
error, 13
event, 14

F
file, 31
future, 14

G
get(), 11
get_all(), 12

I
is_locked(), 31
is_running() (server class method), 25

P
pending(), 13

S
session()

built-in function, 11
settings, 31
start() (server class method), 25
stop() (server class method), 25

W
wait(), 13

41

	Description
	Getting Started
	Endpoints
	Caching
	Overview
	Client Object
	Methods
	Decorators

	ClientResponse Object
	Async- and ThreadResults Object

	Reference
	Client Reference
	Public Decorators
	Public Methods

	ClientResponse Reference
	Public Methods
	API Response Properties
	Internal Request Properties

	AsyncResults Reference
	Public Methods
	Public Coroutines

	ThreadResults Reference
	Public Methods

	Examples
	Async Mode Examples
	Client.get() Examples
	Client.batch_get() Examples
	Client.get_all() Examples

	Sync (Threaded) Mode Examples
	Client.get() Examples
	Client.batch_get() Examples
	Client.get_all() Examples

	Various Examples

	Overview
	Reference
	Examples
	Overview
	Reference
	Public Methods
	Public Properties

	Examples
	Correct Usage Examples
	Incorrect Usage Examples

	Config File
	Description
	Sections
	CLIENT
	SERVER
	CACHE_SIZE
	CACHE_TTL_GROUPS
	CACHE_TTL_SHORT
	CACHE_TTL_LONG

	Index

